歡迎訪問唐山市三川鋼鐵機械制造有限公司
銷售部:13832895888
供應部:13633361888
郵箱:tsscjx@cegoogle.cn
sanchuan@cegoogle.cn
傳真:0315-2969909
網址:m.wjyhy.cn
地址:唐山市路南區女織寨村南
謂轉爐煉鋼所,就是將鐵水、廢鋼等煉成具有所要求化學成分的鋼,并使其具有一定的物理化學性能和力學性能。目前轉爐煉鋼是世界上最主要的煉鋼生產方法。(a)筒球形;(b)錐球形;(c)截錐形轉爐的形狀主要有筒球型、錐球型和截錐型。轉爐煉鋼(1)筒球型:熔池形狀由一個球缺體和一個圓筒體組成。它的優點是爐型形狀簡單,砌筑方便,爐殼制造容易。熔池內型比較接近金屬液循環流動的軌跡,在熔池直徑足夠大時,能保證在較大的供氧強度下吹煉而噴濺最小,也能保證有足夠的熔池深度,使爐襯有較高的壽命。大型轉爐多采用這種爐型。(2)錐球型:熔池由一個錐臺體和一個球缺體組成。這種爐型與同容量的筒球型轉爐相比,若熔池深度相同則熔池面積比筒球型大,有利于冶金反應的進行。同時,隨著爐襯的侵蝕熔池變化較小,對煉鋼操作有利。歐洲生鐵含磷量相對偏高的國家,較多采用此種爐型。我國2080噸的轉爐多采用錐球型,對筒球型與錐球型的適用性,看法尚不一致。有人認為錐球型適用于大轉爐(奧地利),有人卻認為適用于小轉爐(蘇聯)。但世界上已有的大型轉爐多采用筒球型。(3)截錐型:熔池為上大下小的圓錐臺。其特點是構造簡單且平底熔池便于修砌。這種爐型基本上能滿足煉鋼反應的要求,適用于小型轉爐。我國30噸以下的轉爐多用這種爐型。國外轉爐容量普遍較大,故極少采用此種形式。
我們知道通常帝王下葬的時候,所選用的棺木一般是金絲楠木,我國故宮的主要建筑也都是用金絲楠木作為主要材料,本溪專業轉爐安裝現場廠家龍椅更是要找金絲楠木中的上品來制作,在木材界我們知道一般有楠、樟、梓、椆的說法,而其中楠木更是位居其首,楠木這么受到皇家歡迎的幾個原因是這種木材十分耐腐,就算埋在地下幾千年都不會腐爛,考古時候常常能碰到這種金絲楠木棺材完好無損的狀態,但是楠木并不是硬度最大的木,世界有一種木材硬度超過鋼鐵,本溪專業轉爐安裝現場廠家子彈都打不穿,被稱為木王,由于太過堅硬,以至于在古代機械化水平不足的情況下,難以進行加工,今天我們就來了解一下吧!鐵樺樹,是一種生長在海拔700米左右山地的樹,主要分布在一些比較寒冷的地方,在俄羅斯、日本、朝鮮、遼寧北部、浙江西部等地都有分布,由于鐵樺樹非常非常地堅硬,其硬度是鋼鐵的兩倍,所以它可以用來制作航天的配件以及代替鋼鐵使用,比如可以用于汽車游輪的配件,甚至子彈都不能打穿它,世界最好的茶幾都是用鐵樺木來制作的。
轉爐煉鋼工藝各項指標取決于鐵水的化學成分,而對鐵水的主要要求是含硫量低(低于0.03%),相應要求較高含硅(0.7%-0.9%)及具有優化造渣所需的錳量(0.8%-1.0%)。煉鐵煉鋼各階段脫硫過程理化規律及動力特性分析表明,在動力方面,在鐵水中比在鋼水中更容易保證脫硫反應,因為在含碳量較高及氧化度較低條件下硫具有更高的活性。然而在高爐煉鐵當中很難脫硫,因為在高爐一系列復雜的氧化—還原反應中,深脫硫的各種熱動力條件的能量不可避免地會增高硅含量并因此導致石灰及焦炭消耗的增加及產量的下降。因此,生產低硫鐵需周密策劃工藝,采用含硫最少的爐料及制備高堿度混成渣。在轉爐吹煉中脫硫也無效果,因為鋼渣系中達不到平衡狀態,渣與鋼間的硫分配系數因熔池氧化度高及碳含量低,僅為2-7。如此低的硫分配系數使得難以在轉爐冶煉中實現深脫硫,并導致煉鋼生產在技術及經濟上的巨大消耗。無論是在高爐煉鐵,還是在轉爐煉鋼當中都保證不了金屬有效脫硫所需的熱動力條件,因此進行高爐煉鐵及轉爐煉鋼過程中的深脫硫研究,在技術及經濟上都是不可取的。而合理的作法是將脫硫過程從高爐及轉爐中分離出來。這就可簡化燒結—高爐—轉爐生產流程降低生產成本。將脫硫從高爐及轉爐中分離出來,使高爐爐外脫硫成為設計大型聯合鋼廠和重要工藝環節,在冶煉低硅鐵的同時不必再為保證轉爐中的精煉進行代價很高的高爐爐外脫硅。鐵水原始硅含量低還可降低錳含量。在氧氣轉爐煉鋼中錳的作用非常重要,它決定著及早造渣所需的條件并對出鋼前終點鋼水氧化度起調節作用,長期實踐證明,需設法使鐵水中錳保持0.8%-1.0%的水平,因而在燒結混合料中必需補充錳,而這就提高了成本。燒結—高爐—轉爐各流程錳平衡分析表明,上述錳在高爐里還原、然后在轉爐里氧化導致錳原料及錳本身不可彌補的巨大損失,而且還給各生產流程操作增加很多麻煩。在碳含量很低(0.05%-0.07%)條件下停止吹煉時,氧化度的影響如此之大,以致會把錳的最終含量定在極窄范圍內,實際上已很少再與鐵水原始錳含量相關。在這種條件下,盡管鐵水原始錳含量達0.5%-1.2%,但鋼的最終錳含量實際上都一樣(0.07%-0.11%)。因此在當代轉爐煉鋼工藝條件下(各爐次都有過吹操作),沒必要在燒結混合料中使用含錳原料來提高鐵水原始錳含量,更合理的作法是冶煉低錳鐵。同時為節約低錳鐵在轉爐煉鋼中脫氧的用量,研究直接采用錳礦石的效果具有重要意義。對眾多爐次進行工業平衡計算所得工藝指標的對比表明,冶煉鐵水不添加錳礦石,而在轉爐煉鋼中添加錳礦石,與用含錳1.13%的鐵水煉鋼,這兩種煉鋼法相比,前者每噸生鐵可節省錳礦石15.3kg.此外,還可減少錳鐵1.3kg/t鋼、石灰5kg/t,氧氣2.17m3/t的耗量,并可大大縮短吹煉時間。鐵水中硅、錳含量低及無需脫硫,這些條件會改變造渣機理及動力特性,因為這時石灰消耗下降,渣量減少,渣堿度及氧化度增高。在這樣的條件下,渣的精煉功能只限于鐵水脫磷。這樣就能在轉爐冶煉本身中多次利用渣,使渣具有很高的精煉能力。根據這一原則開發出轉爐煉鋼新工藝,即在轉爐煉鋼本身中多次(3-5次)利用后期渣(循環造渣)。采用這樣的工藝可降低石灰消耗及渣中鐵損。及早造就高堿度氧化渣,及使硅、錳含量低可提供鋼水深脫磷所需的強勁動力。
廢鋼是鋼鐵工業的綠色原料,隨著取締“地條鋼”和國家對環保的嚴格要求,各大鋼鐵企業都在大力提高廢鋼比。目前,我國電爐鋼的比例還不到10%,轉爐流程仍是我國產鋼的主流程,因此有必要開發高效、清潔的轉爐流程提高廢鋼比技術。目前,轉爐流程大生產中采用的提高廢鋼比的手段主要有:廢鋼預熱(鐵水包預熱、轉爐爐前及爐后預熱等)、轉爐加入補熱劑(焦炭、焦丁、FeSi、SiC等)。但上述兩類提高廢鋼比的技術均有一定的不足:前者需要專門的加熱設備,后者往往以犧牲鋼水質量為代價。此外,國外還開發了KMS工藝,但因存在噴粉元件壽命短等不足,并沒有在大生產中廣泛應用。因此,如何在不污染鋼液的前提下提高轉爐廢鋼比,已成為亟須解決的關鍵共性難題。此外,單轉爐超40%的大廢鋼比技術也一直是冶金工作者關注的熱點課題。 轉爐二次燃燒氧槍是一種在不污染鋼液的前提下提高轉爐廢鋼比的技術。二次燃燒氧槍是在傳統煉鋼氧槍的基礎上,通過設計合理的副孔,使主孔射出氧氣射流進行脫碳反應,利用副孔射出的氧氣射流與爐內一氧化碳燃燒產生大量的熱量,使轉爐自身熱量得到較充分利用,進而提高轉爐廢鋼比。盡管國內外已對轉爐二次燃燒氧槍技術進行了大量研究,且有的已達到工業應用水平,但目前國外關于該技術在大工業生產中規模化應用的報道很少,而國內目前還未見該技術的大生產規模化應用。因此,有必要對二次燃燒氧槍技術進行深入研究并使其實現工業化應用。本文首先進行了提高廢鋼比的轉爐二次燃燒氧槍技術大生產規模化應用研究;在此基礎上,基于二次燃燒氧槍技術,研究者提出了一種廢鋼比超過40%的單轉爐大廢鋼比技術,并通過大生產試驗,驗證了其大生產應用的可行性,為其大生產規模化應用奠定了基礎。
鋼水包結構特點:結構形式有塞桿式及滑動水口式,龍門架配有脫勾式及軸承式兩種,其中塞桿式鋼包的升降機構中置有滑桿間隙消除機構,以保證多次使用后,塞桿中心與水口中心的一致性。使用維護1、按圖中參考尺寸砌耐火磚,磚縫用耐火泥嵌封。2、使用前應仔細檢查各聯結部位是否牢固,各受力部位有無裂紋及松動現象,傳動部位是否靈活可靠,在明確澆包沒有任何損傷后,嚴格按操作規程使用。3、塞桿式鋼水包應調節煞鐵螺栓,進行對中調試。滑動水口式鋼水包應調節水口螺栓,使兩滑動面接觸良好。4、脫鉤式龍門架應在起吊時檢查兩吊勾是否處于工作狀態。5、承接鋼水起吊前,應將大卡板鎖定,使用時應注意各部分是否處于正常狀態,如發現異常情況應立即停機檢修。6、各傳動機構、滑動部位應保證潤滑良好,經常注油潤滑。7、澆包大修期 2 年,其工作時間不超過 5500 小時,同進在大修期內應該常檢查各機件的磨損情況。
轉爐自動化,工業自動化生產工藝。典型的氧氣轉爐自動化系統由過程控制計算機、微型計算機和各種自動檢測儀表、電子稱量裝置等部分組成。按設備配置和工藝流程分為供氧系統,主、副原料系統,副槍系統,煤氣回收系統,成分分析系統和計算機測控系統。有些大型的轉爐自動化系統除了有轉爐本身的控制系統外,還包括有鐵水預處理系統、鋼水脫氣處理系統和鑄錠控制系統等。氧氣轉爐冶煉周期短、產量高、反應復雜,但用人工控制鋼水終點溫度和含碳量的命中率不高,精度也較差。為了充分發揮氧氣轉爐快速冶煉的優越性,提高產量和質量,降低能耗和原料消耗,需要完善的自動化系統對它進行控制。供氧系統編輯在轉爐吹煉中,供氧系統主要用于控制吹氧量和氧槍位置(即氧槍與鋼水液面的距離),完成以下功能: ①測量氧氣壓力、流量、氧耗量、氧純度等參數,并對氧流量進行閉環控制。②測量氧槍冷卻水溫度、壓力和流量。③采用電子邏輯或微型機控制裝置在吹煉不同階段改變氧槍位置,其定位精度為±10毫米。主、副原料系統編輯轉爐主原料(鐵水和廢鋼)和副原料(石灰、白云石、礦石、螢石、鐵皮等)的稱重誤差和成分誤差,直接影響煉鋼終點命中率和鋼的質量。這個統用以保證主、副原料的準確稱量。它包括 3個部分。①電子秤:用以對鐵水、廢鋼、鐵合金和鋼水進行稱重,并能自動去皮;②副原料稱重和上料控制:當高位料倉中的副原料用光時,可自動地將地下料倉的副原料送入高位料倉,它采用料位檢測器檢出料倉料位信號,用皮帶秤稱重,用電子邏輯或微型機控制上料;③副原料自動配料控制:根據人工設定和計算機設定的副原料的配比,入爐副原料由料斗秤稱量后自動按量裝入。副槍系統編輯吹煉過程中用于測量鋼水溫度和含碳量的檢測裝置,主要包括兩個部分。①測溫定碳裝置:它由測溫定碳和測液面復合探頭、溫度和碳變送器、微型機和陰極射線管顯示器等組成。測試時,副槍將探頭插入鋼水內測溫、取樣,測出的溫度和含碳量信號經微型機處理后,在顯示器上顯示并傳送到過程計算機。②副槍順序控制裝置:它由探頭、電子邏輯線路或微型機構成。副槍系統自動給出所需的探頭,自動裝探頭,檢查探頭是否接通,然后自動快速下槍,移動到變速點時則由快速改成慢速,當移動到測試點時便準確停車,定位精度為±10毫米。待取樣完成后,快速提升,到變速點時改為慢速提升,到達最高點時則自動停車。待定碳信號出現后,則自動拔掉舊探頭。煤氣回收系統編輯用以保證煤氣回收正常運行,它由各種變送器、分析儀和微型機組成。首先進行爐口微壓差(±50帕)測量和自動控制,爐中微壓差經變送器變成標準電信號后,由調節器控制煤氣管道的閘板閥,使爐口保持正壓,防止吸入空氣。其次進行煤氣中CO、O2含量的分析和CO回收的自動控制,采用紅外線CO分析儀、磁氧分析儀(精度為±1%)或質譜儀分析CO、O2含量,用可編程序控制器來控制煤氣回收的操作。最后進行煤氣流量測量。所用方法是先在廢氣管道中取出差壓信號,然后再用差壓變送器將此信號變為電信號進行測量。成分分析系統編輯用直讀光譜儀或 X熒光分析儀來分析鐵水和鋼水的成分。 X熒光還能分析礦石、爐渣的成分。專用計算機對分析值進行處理后將結果打印出來,并將它們傳送到過程控制計算機,為控制作準備。鋼水中的溶氧量則用氧化鋯定氧探頭測出。